Skip to content

Contact sales

By filling out this form and clicking submit, you acknowledge our privacy policy.
  • Labs icon Lab
  • A Cloud Guru
Azure icon

Process and Visualize Historical IoT Data Using Azure Time Series Insights

In this lab, you will explore a Time Series Insights Gen2 (TSI) demo site that Microsoft has set up and loaded with a large dataset, which has enough variety to allow you to more meaningfully explore this data analytics tool. While using the provided lab diagram as map of the user interface (UI), you will get practice using the TSI explorer, while collecting intelligence about the specific dataset loaded into the demo.

Azure icon

Path Info

Clock icon Intermediate
Clock icon 45m
Clock icon Feb 25, 2022

Contact sales

By filling out this form and clicking submit, you acknowledge our privacy policy.

Table of Contents

  1. Challenge

    Explore TSI Features

    1. Log in to the Azure portal in an InPrivate or incognito window, using the credentials displayed on the lab page. Note that you do not need to use the portal for this lab. We've spun up the subscription, just so you have a valid login for the Time Series Insights demo site.
    2. Navigate to the Time Series Insights Gen2 demo, using the link supplied in the Additional Resources section of this lab. You should be logged in automatically, but if prompted, use the same credentials you used to log in to the Azure portal.
    3. Retrieve the lab diagram from the lab page, and use it as a guide for the following steps.
    4. Change from the current Analysis mode to the Model mode. Change back to the Analysis mode.
    5. Change the timeframe you want to display by selecting a region on the chart, using the slider, or manually selecting specific dates from the date range displayed. Any timeframe is fine.
    6. Determine how to smooth the current lines in the chart by modifying the chart interval. (This isn't amplified in the lab diagram; it's your job to find it.)
    7. Navigate the Contoso Windfarm Hierarchy to find the WindDirection sensor type for the W6 windmill at Plant 1. Select the instance (time series), under that sensor, and add the Reading to the chart and the time series well.
    8. On the chart, right-click on a line to toggle between showing or hiding min/max shadows.
    9. Drag over a section of the chart, and right-click to Explore Events and then View Statistics.
    10. Explore the information available in the time series well.
    11. Clear all instances from the time series well (and, therefore, the chart).
  2. Challenge

    Determine Consistency of Active Power Across Windmills

    1. Find the ActivePower time series instance for all 4 of the windmills, and add the value for each to the chart.
    2. Shorten and lengthen the time span to answer this question: Is the ActivePower measure consistent across all 4 windmills in the majority of the observable time spans?
    3. After answering the question of consistency, remove all instances from the chart except for ContosoFarm1W6_GenPower1. Leave that one on the chart.
  3. Challenge

    Confirm that Wind Speed and Active Power Are Correlated

    Common sense tells us that, generally speaking, wind speed and windmill performance are directly correlated. However, we should confirm this understanding to ensure the dataset appears to be delivering valid values.

    1. On the W6 windmill of Contoso Plant 1, find the WindSpeed instance, and add the Reading to the chart.
    2. Zoom and pan and adjust the interval to try to answer this question: Is the Active Power measure correlated with wind speed?
    3. Once you have answered this question, remove the WindSpeed instance from the chart.
  4. Challenge

    Determine If Temperature and Active Power Are Correlated

    Not being wind power experts, we probably don't know if outside temperature is correlated with active power. Let's ask the data.

    1. On the W6 windmill of Contoso Plant 1, find the OutdoorTemperature instance, and add the Time Weighted Reading to the chart.
    2. Zoom and pan and adjust the interval to answer this question: Is the ActivePower measure correlated with outside temperature? Does switching from the Time Weighted Reading to the Reading change your answer?

The Cloud Content team comprises subject matter experts hyper focused on services offered by the leading cloud vendors (AWS, GCP, and Azure), as well as cloud-related technologies such as Linux and DevOps. The team is thrilled to share their knowledge to help you build modern tech solutions from the ground up, secure and optimize your environments, and so much more!

What's a lab?

Hands-on Labs are real environments created by industry experts to help you learn. These environments help you gain knowledge and experience, practice without compromising your system, test without risk, destroy without fear, and let you learn from your mistakes. Hands-on Labs: practice your skills before delivering in the real world.

Provided environment for hands-on practice

We will provide the credentials and environment necessary for you to practice right within your browser.

Guided walkthrough

Follow along with the author’s guided walkthrough and build something new in your provided environment!

Did you know?

On average, you retain 75% more of your learning if you get time for practice.

Start learning by doing today

View Plans