Author avatar

Benney Au

Importing Common Data Types In R

Benney Au

  • Sep 24, 2020
  • 11 Min read
  • 152 Views
  • Sep 24, 2020
  • 11 Min read
  • 152 Views
Data
Data Analytics
Languages and Libraries
R

Introduction

In order to begin a data analysis or modelling project, you first need to fetch and import data into your tool of choice.

In this guide, you will learn to use basic functions in R to work with JSON, CSV, and XML data. This will use data from the Bureau of Transportation Statistics to illustrate the use of these functions. A basic understanding of the R programming language is assumed knowledge for this guide. You can watch a course on Programming with R if you need a refresher.

Importing CSV Files

Comma-separated values (CSV) is a common format for sharing data as it is simple and easy to understand. Generally, each row in the data file represents a new observation. Within each row, different attributes are separated by commas.

The read.csv function is built into the utils package. This means no third-party packages are required to read CSV files in R.

Create the following data.csv in your current working directory.

1year,efficiency,sales
21980,24.3,8949000
31985,27.6,10979000
41990,28,9303000
51991,28.4,8185000
61992,27.9,8213000
71993,28.4,8518000
81994,28.3,8991000
91995,28.6,8620000
101996,28.5,8479000
111997,28.7,8217000
121998,28.8,8085000
131999,28.3,8638000
142000,28.5,8778000
152001,28.8,8352000
162002,29,8042000
172003,29.5,7556000
182004,29.5,7483000
192005,30.3,7660000
202006,30.1,7762000
212007,31.2,7562000
222008,31.5,6769000
232009,32.9,5402000
242010,33.9,5636000
252011,33.1,6093000
262012,35.3,7245000
272013,36.4,7586000
282014,36.5,7708000
292015,37.2,7517000
302016,37.7,6873000
312017,39.4,6081000
csv

From your R IDE, you can run the following code to import it:

1csv <- read.csv('data.csv', header = TRUE)
2csv
3
4typeof(csv)
r

Output:

1> csv <- read.csv('data.csv', header = TRUE)
2> csv
3   year efficiency    sales
41  1980       24.3  8949000
52  1985       27.6 10979000
63  1990       28.0  9303000
74  1991       28.4  8185000
85  1992       27.9  8213000
96  1993       28.4  8518000
107  1994       28.3  8991000
118  1995       28.6  8620000
129  1996       28.5  8479000
1310 1997       28.7  8217000
1411 1998       28.8  8085000
1512 1999       28.3  8638000
1613 2000       28.5  8778000
1714 2001       28.8  8352000
1815 2002       29.0  8042000
1916 2003       29.5  7556000
2017 2004       29.5  7483000
2118 2005       30.3  7660000
2219 2006       30.1  7762000
2320 2007       31.2  7562000
2421 2008       31.5  6769000
2522 2009       32.9  5402000
2623 2010       33.9  5636000
2724 2011       33.1  6093000
2825 2012       35.3  7245000
2926 2013       36.4  7586000
3027 2014       36.5  7708000
3128 2015       37.2  7517000
3229 2016       37.7  6873000
3330 2017       39.4  6081000
34> typeof(csv)
35[1] "list"

Importing JSON Data

JSON is another popular format for sharing data. It allows hierarchical data types but is more verbose than CSV.

To import JSON, create the data.json file in your working directory:

1[
2    {"year": 1980, "efficiency": 24.3, "sales": 8949000},
3    {"year": 1985, "efficiency": 27.6, "sales": 10979000},
4    {"year": 1990, "efficiency": 28, "sales": 9303000},
5    {"year": 1991, "efficiency": 28.4, "sales": 8185000},
6    {"year": 1992, "efficiency": 27.9, "sales": 8213000},
7    {"year": 1993, "efficiency": 28.4, "sales": 8518000},
8    {"year": 1994, "efficiency": 28.3, "sales": 8991000},
9    {"year": 1995, "efficiency": 28.6, "sales": 8620000},
10    {"year": 1996, "efficiency": 28.5, "sales": 8479000},
11    {"year": 1997, "efficiency": 28.7, "sales": 8217000},
12    {"year": 1998, "efficiency": 28.8, "sales": 8085000},
13    {"year": 1999, "efficiency": 28.3, "sales": 8638000},
14    {"year": 2000, "efficiency": 28.5, "sales": 8778000},
15    {"year": 2001, "efficiency": 28.8, "sales": 8352000},
16    {"year": 2002, "efficiency": 29, "sales": 8042000},
17    {"year": 2003, "efficiency": 29.5, "sales": 7556000},
18    {"year": 2004, "efficiency": 29.5, "sales": 7483000},
19    {"year": 2005, "efficiency": 30.3, "sales": 7660000},
20    {"year": 2006, "efficiency": 30.1, "sales": 7762000},
21    {"year": 2007, "efficiency": 31.2, "sales": 7562000},
22    {"year": 2008, "efficiency": 31.5, "sales": 6769000},
23    {"year": 2009, "efficiency": 32.9, "sales": 5402000},
24    {"year": 2010, "efficiency": 33.9, "sales": 5636000},
25    {"year": 2011, "efficiency": 33.1, "sales": 6093000},
26    {"year": 2012, "efficiency": 35.3, "sales": 7245000},
27    {"year": 2013, "efficiency": 36.4, "sales": 7586000},
28    {"year": 2014, "efficiency": 36.5, "sales": 7708000},
29    {"year": 2015, "efficiency": 37.2, "sales": 7517000},
30    {"year": 2016, "efficiency": 37.7, "sales": 6873000},
31    {"year": 2017, "efficiency": 39.4, "sales": 6081000}
32  ]
json

There is no built-in method for parsing JSON in R. However, you can install jsonlite, a popular library for converting R data types to and from JSON.

The code below demonstrates how to install this package and use it to import a JSON file into your R environment.

1install.packages('jsonlite')
2
3json <- jsonlite$fromJSON('data.json')
4json
r

The output will be the same as the CSV sample, since the input data is the same.

Importing XML Data

Another common data format is XML. This can be more verbose and therefore lead to larger file sizes. However, if you are working with legacy systems, they may output XML and you will have no ability to change it.

Create the following xml file data.xml:

1<?xml version="1.0" encoding="UTF-8"?>
2<root>
3   <element>
4      <efficiency>24.3</efficiency>
5      <sales>8949000</sales>
6      <year>1980</year>
7   </element>
8   <element>
9      <efficiency>27.6</efficiency>
10      <sales>10979000</sales>
11      <year>1985</year>
12   </element>
13   <element>
14      <efficiency>28</efficiency>
15      <sales>9303000</sales>
16      <year>1990</year>
17   </element>
18   <element>
19      <efficiency>28.4</efficiency>
20      <sales>8185000</sales>
21      <year>1991</year>
22   </element>
23   <element>
24      <efficiency>27.9</efficiency>
25      <sales>8213000</sales>
26      <year>1992</year>
27   </element>
28   <element>
29      <efficiency>28.4</efficiency>
30      <sales>8518000</sales>
31      <year>1993</year>
32   </element>
33   <element>
34      <efficiency>28.3</efficiency>
35      <sales>8991000</sales>
36      <year>1994</year>
37   </element>
38   <element>
39      <efficiency>28.6</efficiency>
40      <sales>8620000</sales>
41      <year>1995</year>
42   </element>
43   <element>
44      <efficiency>28.5</efficiency>
45      <sales>8479000</sales>
46      <year>1996</year>
47   </element>
48   <element>
49      <efficiency>28.7</efficiency>
50      <sales>8217000</sales>
51      <year>1997</year>
52   </element>
53   <element>
54      <efficiency>28.8</efficiency>
55      <sales>8085000</sales>
56      <year>1998</year>
57   </element>
58   <element>
59      <efficiency>28.3</efficiency>
60      <sales>8638000</sales>
61      <year>1999</year>
62   </element>
63   <element>
64      <efficiency>28.5</efficiency>
65      <sales>8778000</sales>
66      <year>2000</year>
67   </element>
68   <element>
69      <efficiency>28.8</efficiency>
70      <sales>8352000</sales>
71      <year>2001</year>
72   </element>
73   <element>
74      <efficiency>29</efficiency>
75      <sales>8042000</sales>
76      <year>2002</year>
77   </element>
78   <element>
79      <efficiency>29.5</efficiency>
80      <sales>7556000</sales>
81      <year>2003</year>
82   </element>
83   <element>
84      <efficiency>29.5</efficiency>
85      <sales>7483000</sales>
86      <year>2004</year>
87   </element>
88   <element>
89      <efficiency>30.3</efficiency>
90      <sales>7660000</sales>
91      <year>2005</year>
92   </element>
93   <element>
94      <efficiency>30.1</efficiency>
95      <sales>7762000</sales>
96      <year>2006</year>
97   </element>
98   <element>
99      <efficiency>31.2</efficiency>
100      <sales>7562000</sales>
101      <year>2007</year>
102   </element>
103   <element>
104      <efficiency>31.5</efficiency>
105      <sales>6769000</sales>
106      <year>2008</year>
107   </element>
108   <element>
109      <efficiency>32.9</efficiency>
110      <sales>5402000</sales>
111      <year>2009</year>
112   </element>
113   <element>
114      <efficiency>33.9</efficiency>
115      <sales>5636000</sales>
116      <year>2010</year>
117   </element>
118   <element>
119      <efficiency>33.1</efficiency>
120      <sales>6093000</sales>
121      <year>2011</year>
122   </element>
123   <element>
124      <efficiency>35.3</efficiency>
125      <sales>7245000</sales>
126      <year>2012</year>
127   </element>
128   <element>
129      <efficiency>36.4</efficiency>
130      <sales>7586000</sales>
131      <year>2013</year>
132   </element>
133   <element>
134      <efficiency>36.5</efficiency>
135      <sales>7708000</sales>
136      <year>2014</year>
137   </element>
138   <element>
139      <efficiency>37.2</efficiency>
140      <sales>7517000</sales>
141      <year>2015</year>
142   </element>
143   <element>
144      <efficiency>37.7</efficiency>
145      <sales>6873000</sales>
146      <year>2016</year>
147   </element>
148   <element>
149      <efficiency>39.4</efficiency>
150      <sales>6081000</sales>
151      <year>2017</year>
152   </element>
153</root>
xml

There are a few different ways to work with XML. The XML package is built in, but some versions of R have memory leaks. Further, using this package can lead to quite verbose code.

A simpler solution is using XML2, which is more focused on extracting values out of XML documents.

The code below demonstrates how to extract XML values using the XML2 package into a data structure we can analyze in R.

1install.packages('xml2')
2
3parse_xml <- function (file) {
4  doc <- xml2::read_xml(file)
5  efficiency <- xml2::xml_double(xml2::xml_find_all(doc, "//root/element/efficiency"))
6  sales <- xml2::xml_double(xml2::xml_find_all(doc, "//root/element/sales"))
7  year <- xml2::xml_double(xml2::xml_find_all(doc, "//root/element/year"))
8  cbind(efficiency, sales, year)
9}
10
11data <- parse_xml('data.xml')
12data
r

The code snippet above creates a function to extract the sales, efficiency, and year columns. Then cbind is used to combine all these columns together, producing a table. This code uses xpath queries to search for the given values. If your XML document is complex, it can take a bit of trial and error to query the values you want. For this reason, the XML data format is typically not the preferred way to share data.

This parsing logic is encapsulated in the parse_xml function. This is also helpful for keeping the global environment clean of temporary variables.

Conclusion

Data analysts need to be comfortable importing different data formats to effectively undertake data modelling and analysis projects. This guide has shown you how to import three common formats: XML, JSON and CSV. To further build on these skills, you can watch this course on Querying and Converting Data Types in R.