Featured resource
2026 Tech Forecast
2026 Tech Forecast

Stay ahead of what’s next in tech with predictions from 1,500+ business leaders, insiders, and Pluralsight Authors.

Get these insights
  • Course

Caffe2: Getting Started

Caffe2 is a deep learning framework that was open-sourced by Facebook in April 2017. Caffe2 has been explicitly built for large-scale production deployment and for use in a constrained resource environment such as mobile devices.

Beginner
2h 2m
(8)

Created by Janani Ravi

Last Updated Nov 01, 2023

Course Thumbnail
  • Course

Caffe2: Getting Started

Caffe2 is a deep learning framework that was open-sourced by Facebook in April 2017. Caffe2 has been explicitly built for large-scale production deployment and for use in a constrained resource environment such as mobile devices.

Beginner
2h 2m
(8)

Created by Janani Ravi

Last Updated Nov 01, 2023

Get started today

Access this course and other top-rated tech content with one of our business plans.

Try this course for free

Access this course and other top-rated tech content with one of our individual plans.

This course is included in the libraries shown below:

  • Data
What you'll learn

Caffe2 is an open-source deep learning framework and competitor to frameworks such as TensorFlow, Apache MXNet and PyTorch. It's focus is on efficiency and works well with constrained environments such as on mobile devices. In this course, Caffe2: Getting Started, you'll learn the fundamentals of building neural nets and working with Caffe2, get introduced to the Caffe2 Model Zoo and see how you can import models from PyTorch to Caffe2 using ONNX. First, you'll discover the basic building blocks of Caffe2, blobs and workspaces, nets and operators, and put those together to build neural networks to perform tasks such as regression and classification. Then, you'll get introduced to common image pre-processing techniques and the Caffe2 Model Zoo which offers a wide variety of pre-trained models for common use cases. Next, you'll focus on interoperability between the PyTorch deep learning framework and Caffe2 using ONNX, an open source framework for exporting models from one framework to another. Last, you'll use ONNX to move a super-resolution model from PyTorch to Caffe2. By the end of this course, you should be comfortable building and executing neural networks using Caffe2, using pre-trained models for common tasks and using ONNX to move from one framework to another.

Caffe2: Getting Started
Beginner
2h 2m
(8)
Table of contents

About the author
Janani Ravi - Pluralsight course - Caffe2: Getting Started
Janani Ravi
191 courses 4.5 author rating 6281 ratings

A problem solver at heart, Janani has a Masters degree from Stanford and worked for 7+ years at Google. She was one of the original engineers on Google Docs and holds 4 patents for its real-time collaborative editing framework.

Get started with Pluralsight