Data Engineering with AWS Machine Learning

The whole field of machine learning revolves around data. This course will teach you how to properly choose between the various AWS data repositories, ingestion services, and transformation services in a cost-effective, best-practice manner.
Course info
Level
Advanced
Updated
Jun 18, 2020
Duration
2h 54m
Table of contents
Course Overview
Important Data Characteristics to Consider in a Machine Learning Solution
Typical Data Flow for Machine Learning on AWS
Data Storage Options for Machine Learning on AWS
Database Options for Machine Learning on AWS
Using a Data Warehouse or a Data Lake as a Machine Learning Repository
Streaming Data Ingestion Solutions on AWS for Machine Learning
Batch Data Ingestion Solutions on AWS for Machine Learning
Data Transformation Overview on AWS for Machine Learning
Data-driven Workflows: The AWS Data Pipeline
Data Transformation Using Apache Spark on Amazon EMR
Data Transformation Using Serverless AWS Glue and Serverless Amazon Athena
Description
Course info
Level
Advanced
Updated
Jun 18, 2020
Duration
2h 54m
Description

Storing data for machine learning is challenging due to the varying formats and characteristics of data. Raw ingested data must first be transformed into the format necessary for downstream machine learning consumption, and once the data is ready to be used, it must be ingested from storage to the machine learning service. In this course, Data Engineering with AWS Machine Learning, you’ll learn to choose the right AWS service for each of these data-related machine learning ML tasks for any given scenario. First, you’ll explore the wide variety of data storage solutions available on AWS and what each type of storage is used for. Next, you’ll discover the differing AWS services used to ingest data into ML-specific services and when to use each one. Finally, you’ll learn how to transform your raw data into the proper formats used by the various AWS ML services. When you’re finished with this course, you’ll have the skills and knowledge of how to properly provide data solutions for storing, preparing, and ingesting data needed to architect data engineering solutions on AWS for Machine Learning, and be prepared to take the AWS Machine Learning Certification exam.

About the author
About the author

Kim Schmidt is an AWS Partner & Vendor. She's worked for or with Dun & Bradstreet, Google, Microsoft, & AWS. Kim is currently writing a book "Artificial Intelligence & Analytics on AWS."

More from the author
Serverless Analytics on AWS
Intermediate
2h 40m
Aug 20, 2019
Section Introduction Transcripts
Section Introduction Transcripts

Course Overview
[Autogenerated] Hi, everyone. My name is Kim Schmidt and welcome to my course data engineering for AWS Machine Learning. I am an age of US Data and AI expert at data Leader. Making quality data available in a reliable manner is a major determinant of success for machine learning initiatives. Data engineers are test with this huge responsibility and they need to know the data and application characteristics to look for when making choices of what age of US service to use. In a specific scenario, this depends on many other factors that need to be thoroughly understood. This course will teach you everything you need to know to do data engineering on AWS for machine learning successfully, Some of the major topics that we will cover include how to choose the best data repository, ingestion service and transformation service for every use case possible. What machine learning use cases can be used with different AWS services used for data engineering, different ways to perform analytics and e. T. L on batch and streaming data. How to automate many of these tasks and how all the AWS services used in machine learning scenarios work together. By the end of this course, you'll understand completely how to be a successful data engineer for AWS Machine learning and pass that ML exam with flying colors Before beginning this course, you should be familiar with AWS security networking databases and analytics. From here, you should feel comfortable diving into other courses on feature engineering, exploratory data analysis and data modelling and machine learning implementation for all age of US machine learning. I hope you'll join me on this journey to learn these important and fascinating topics with the data engineering for AWS Machine Learning Course at Plural site.