Expanded Library

Applying MapReduce to Common Data Problems

by Janani Ravi

Knowing how to program MapReduce is only half the battle. In this course, you'll learn how to set up the correct MapReduce based on what you want to accomplish.

What you'll learn

This course, Applying MapReduce to Common Data Problems, helps you with three unique MapReduce patterns: summarizing numeric data, filtering large datasets, and building an index for fast data lookup. First, you'll learn about how you start "Thinking MapReduce" including what's involved and what needs to be broken down to start thinking in these terms. Next, you'll explore how to compute numeric summary metrics, and how to filter large data sets. Finally, you'll wrap up the course by learning about building indices, and why an inverted index is so important in the context of search engines. After watching this course, you'll have the confidence to spot patterns in MapReduce problems and will be on you're way to mastering this programming model.

About the author

Janani has a Masters degree from Stanford and worked for 7+ years at Google. She was one of the original engineers on Google Docs and holds 4 patents for its real-time collaborative editing framework. After spending years working in tech in the Bay Area, New York, and Singapore at companies such as Microsoft, Google, and Flipkart, Janani finally decided to combine her love for technology with her passion for teaching. She is now the co-founder of Loonycorn, a content studio focused on providin... more

Ready to upskill? Get started