Featured resource
2026 Tech Forecast
2026 Tech Forecast

Stay ahead of what’s next in tech with predictions from 1,500+ business leaders, insiders, and Pluralsight Authors.

Get these insights
  • Course

Scaling scikit-learn Solutions

This course covers the important considerations for scikit-learn models in improving prediction latency and throughput; specific feature representation and partial learning techniques, as well as implementations of incremental learning, out-of-core learning, and multicore parallelism.

Advanced
2h 54m
(17)

Created by Janani Ravi

Last Updated Jan 31, 2020

Course Thumbnail
  • Course

Scaling scikit-learn Solutions

This course covers the important considerations for scikit-learn models in improving prediction latency and throughput; specific feature representation and partial learning techniques, as well as implementations of incremental learning, out-of-core learning, and multicore parallelism.

Advanced
2h 54m
(17)

Created by Janani Ravi

Last Updated Jan 31, 2020

Get started today

Access this course and other top-rated tech content with one of our business plans.

Try this course for free

Access this course and other top-rated tech content with one of our individual plans.

This course is included in the libraries shown below:

  • AI
  • Data
What you'll learn

Even as the number of machine learning frameworks and libraries increases rapidly, scikit-learn is retaining its popularity with ease. scikit-learn makes the common use-cases in machine learning - clustering, classification, dimensionality reduction and regression - incredibly easy.

In this course, Scaling scikit-learn Solutions you will gain the ability to leverage out-of-core learning and multicore parallelism in scikit-learn.

First, you will learn considerations that affect latency and throughput in prediction, including the number of features, feature complexity, and model complexity.

Next, you will discover how smart choices in feature representation and in how you model sparse data can improve the scalability of your models. You will then understand what incremental learning is, and how to use scikit-learn estimators that support this key enabler of out-of-core learning.

Finally, you will round out your knowledge by parallelizing key tasks such as cross-validation, hyperparameter tuning, and ensemble learning.

When you’re finished with this course, you will have the skills and knowledge to identify key techniques to help make your model scalable and implement them appropriately for your use-case.

Scaling scikit-learn Solutions
Advanced
2h 54m
(17)
Table of contents

About the author
Janani Ravi - Pluralsight course - Scaling scikit-learn Solutions
Janani Ravi
192 courses 4.5 author rating 6281 ratings

A problem solver at heart, Janani has a Masters degree from Stanford and worked for 7+ years at Google. She was one of the original engineers on Google Docs and holds 4 patents for its real-time collaborative editing framework.

Get started with Pluralsight