Featured resource
2026 Tech Forecast
2026 Tech Forecast

Stay ahead of what’s next in tech with predictions from 1,500+ business leaders, insiders, and Pluralsight Authors.

Get these insights
  • Course

Building Clustering Models with scikit-learn

This course covers several important techniques used to implement clustering in scikit-learn, including the K-means, mean-shift and DBScan clustering algorithms, as well as the role of hyperparameter tuning, and performing clustering on image data.

Intermediate
2h 33m
(35)

Created by Janani Ravi

Last Updated Apr 24, 2019

Course Thumbnail
  • Course

Building Clustering Models with scikit-learn

This course covers several important techniques used to implement clustering in scikit-learn, including the K-means, mean-shift and DBScan clustering algorithms, as well as the role of hyperparameter tuning, and performing clustering on image data.

Intermediate
2h 33m
(35)

Created by Janani Ravi

Last Updated Apr 24, 2019

Get started today

Access this course and other top-rated tech content with one of our business plans.

Try this course for free

Access this course and other top-rated tech content with one of our individual plans.

This course is included in the libraries shown below:

  • AI
  • Data
What you'll learn

Clustering is an extremely powerful and versatile unsupervised machine learning technique that is especially useful as a precursor to applying supervised learning techniques like classification. In this course, Building Clustering Models with scikit-learn, you will gain the ability to enumerate the different types of clustering algorithms and correctly implement them in scikit-learn. First, you will learn what clustering seeks to achieve, and how the ubiquitous k-means clustering algorithm works under the hood. Next, you will discover how to implement other techniques such as DBScan, mean-shift, and agglomerative clustering. You will then understand the importance of hyperparameter tuning in clustering, such as identifying the correct number of clusters into which your data ought to be partitioned. Finally, you will round out the course by implementing clustering algorithms on image data - an especially common use-case. When you are finished with this course, you will have the skills and knowledge to select the correct clustering algorithm based on the problem you are trying to solve, and also implement it correctly using scikit-learn.

Building Clustering Models with scikit-learn
Intermediate
2h 33m
(35)
Table of contents

About the author
Janani Ravi - Pluralsight course - Building Clustering Models with scikit-learn
Janani Ravi
192 courses 4.5 author rating 6281 ratings

A problem solver at heart, Janani has a Masters degree from Stanford and worked for 7+ years at Google. She was one of the original engineers on Google Docs and holds 4 patents for its real-time collaborative editing framework.

Get started with Pluralsight