Conceptualizing the Processing Model for Azure Databricks Service

In this course, you will learn about the Spark based Azure Databricks platform. You will see how Spark Structured Streaming processing model works, and then use it to build end-to-end production ready streaming pipeline on Azure Databricks platform.
Course info
Rating
(14)
Level
Intermediate
Updated
Jul 21, 2020
Duration
2h 51m
Table of contents
Course Overview
Getting Started with Structured Streaming on Azure Databricks
Setting up Databricks Environment
Configuring Source and Sink Stores
Building Streaming Pipeline Using Structured Streaming
Making Streaming Pipeline Production Ready
Understanding Pricing, Workloads, and Competition
Customizing the Cluster
Description
Course info
Rating
(14)
Level
Intermediate
Updated
Jul 21, 2020
Duration
2h 51m
Description

Modern data pipelines often include streaming data, that needs to be processed in real-time. While Apache Spark is very popular for big data processing and can help us build reliable streaming pipelines, managing the Spark environment is no cakewalk.

In this course, Conceptualizing the Processing Model for Azure Databricks Service, you will learn how to use Spark Structured Streaming on Databricks platform, which is running on Microsoft Azure, and leverage its features to build an end-to-end streaming pipeline quickly and reliably. And all this while learning about collaboration options and optimizations that it brings, but without worrying about the infrastructure management.

First, you will learn about the processing model of Spark Structured Streaming, about the Databricks platform and features, and how it is runs on Microsoft Azure.

Next, you will see how to setup the environment, like workspace, clusters, and security; configure streaming sources and sinks, and see how Structured Streaming fault tolerance works.

Followed by this, you will learn how to build each phase of streaming pipeline, by extracting the data from source, transforming it, and loading it in a sink. And then make it production ready, and run it using Databricks jobs.

You will also see, how to customize the cluster using Initialization scripts and Docker containers, to suit your business requirements.

Finally, you will explore other aspects. You will see what are the different workloads available, and how pricing works. We will also talk about best practices, in terms of development, performance, stability and cost. And lastly, you will see how Spark Structured Streaming on Azure Databricks compares to other managed services, like Flink on AWS, Azure Stream Analytics, Beam on Google Cloud etc.

By the end of this course, you will have the skills and knowledge of Azure Databricks platform needed to build an end-to-end streaming pipeline, using Spark Structured streaming.

About the author
About the author

Mohit is a Data Engineer, a Microsoft Certified Trainer (MCT) and a consultant. Mohit has 15+ years of extensive experience in architecting large scale Business Intelligence, Data Warehousing and Big Data solutions with companies like Microsoft and some leading investment banks.

More from the author
Section Introduction Transcripts
Section Introduction Transcripts

Course Overview
Hi everyone. My name is Mohit Batra, and welcome to my course, Conceptualizing the Processing Model for Azure Databricks Service. Modern data pipelines often include streaming data that needs to be processed in real time. While Spark Structured Streaming can help us build streaming pipelines, managing the Spark environment is no cakewalk. Wouldn't it be great to have a cloud service just to do that? This course walks you through Azure Databricks, which is Spark‑based Unified Analytics Platform running on Microsoft Azure, and you will see how it can be used as a platform for Spark Structured Streaming. Some of the major topics that we will cover include understanding the architecture and competence of Azure Databricks, setting up the Azure Databricks environment, building an end‑to‑end streaming pipeline, customizing the cluster to suit your own requirements, and other aspects, like pricing, best practices, and how it compares to other managed offerings. By the end of this course, you will be comfortable to build streaming pipelines on Azure Databricks using Spark Structured Streaming. Before beginning the course, I would recommend being familiar with basics of Microsoft Azure. I hope you will join me on this journey to learn building streaming pipelines with my course, Conceptualizing the Processing Model for Azure Databricks Service, here at Pluralsight.