Understanding the Foundations of TensorFlow

by Janani Ravi

This course introduces TensorFlow, an open source data flow library for numerical computations using data flow graphs.

What you'll learn

In this course, Understanding the Foundations of TensorFlow, you'll learn the TensorFlow library from very first principles. First, you'll start with the basics of machine learning using linear regression as an example and focuses on understanding fundamental concepts in TensorFlow. Next, you'll discover how to apply them to machine learning, the concept of a Tensor, the anatomy of a simple program, basic constructs such as constants, variables, placeholders, sessions, and the computation graph. Then, you'll be introduced to TensorBoard, the visualization tool used to view and debug the data flow graphs. You'll work with basic math operations and image transformations to see how common computations are performed. Finally, you'll solve a real world machine learning problem using the MNIST handwritten dataset and the k-nearest-neighbours algorithm. By the end of this course, you'll have a better understanding of the foundations of TensorFlow.

About the author

Janani has a Masters degree from Stanford and worked for 7+ years at Google. She was one of the original engineers on Google Docs and holds 4 patents for its real-time collaborative editing framework. After spending years working in tech in the Bay Area, New York, and Singapore at companies such as Microsoft, Google, and Flipkart, Janani finally decided to combine her love for technology with her passion for teaching. She is now the co-founder of Loonycorn, a content studio focused on providin... more

Ready to upskill? Get started