Leveraging Architectural Design Patterns on the Google Cloud

This course covers the core choices around compute, storage and networking, and demonstrates how complex architectures can be assembled relatively easily by putting together the powerful building blocks that the GCP provides.
Course info
Level
Advanced
Updated
Jan 10, 2019
Duration
2h 30m
Table of contents
Course Overview
Understanding Classic Architectural Patterns on the GCP
Leveraging Container-based Pipelines on the GCP
Designing Network Architectures on the GCP
Description
Course info
Level
Advanced
Updated
Jan 10, 2019
Duration
2h 30m
Description

The Google Cloud Platform offers up a very large number of services for every important aspect of public cloud computing. In this course, Leveraging Architectural Design Patterns on the Google Cloud, you will learn how the different core design choices in storage, compute, and networking can be made to assemble complex architectures for specific use cases. First, you will learn specific types of reusable design patterns built using GCP components. These include the use of managed instance groups for infrastructure, cloud functions for event-driven compute, lambda and kappa architectures for big data processing, and BigQuery ML and Cloud ML Engine for machine learning applications. Next, you will explore how to pull together Jenkins, Cloud Source Repositories, and the Google Container Registry to orchestrate a CI/CD pipeline. This involves first creating a cluster and installing Helm (which is the Kubernetes package manager), then deploying your app via a canary release, committing the code into the Cloud Source Repos and finally using Jenkins (which is an automated build server) to push the master branch into production. Finally, you will understand and construct various different networking patterns on the GCP. These include the use of a bastion host, or jump host to restrict the external touch-points within a VPC network. By the end of this course, you will be very comfortable identifying the important decisions that a Cloud Architect depends upon, and will have the skills and knowledge to use complex architectural design patterns that have been put to proven use by others.

About the author
About the author

A problem solver at heart, Janani has a Masters degree from Stanford and worked for 7+ years at Google. She was one of the original engineers on Google Docs and holds 4 patents for its real-time collaborative editing framework.

More from the author
Using PyTorch in the Cloud: PyTorch Playbook
Intermediate
2h 21m
Apr 25, 2019
Building Clustering Models with scikit-learn
Intermediate
2h 33m
Apr 24, 2019
More courses by Janani Ravi